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Abstract—In this paper, an accurate and efficient character-
ization of a two-dimensional (2-D) electromagnetic band-gap
(EBG) structures is performed, which exploits a full-wave diffrac-
tion theory developed for one-dimensional diffraction gratings.
EBG materials constituted by 2-D arrays of dielectric rods with
arbitrary shape and lattice configuration are analyzed, and the
transmission and reflection efficiencies are determined. The high
convergence rate of the proposed technique is demonstrated.
Results are presented for both TE and TM polarizations, showing
the efficiencies as a function of frequency and physical parame-
ters. Comparisons with other theoretical results reported in the
literature are shown with a very good agreement, and the authors’
theory is also favorably compared with available experimental
data. Useful design contour plots are reported by which a very im-
mediate and accurate visualization of the band-gap configurations
can be obtained, and design formulas are also included. Finally,
the behavioral differences when a periodical defect is present are
also highlighted.

Index Terms—Electromagnetic band-gap (EBG) materials,
electromagnetic diffraction, gratings, periodic structures.

I. INTRODUCTION

E LECTROMAGNETIC band-gap (EBG) materials [1], also
called electromagnetic or photonic crystals or photonic

band-gap materials, are periodic structures of great interest for
their applications both in the microwave and infrared wave-
length ranges. In EBG structures, periodic implants of material
with a specific permittivity are embedded in a homogeneous
background of different permittivity; the implants are compa-
rable in size to the operation wavelength, and they may be di-
electric or metallic, but also magneto-dielectric, ferromagnetic,
ferroelectric, or active.

As is known, electromagnetic-wave propagation in EBG
materials is analogous to electron-wave propagation in semi-
conductor crystals: the common feature is the presence of
frequency bands within which the waves are highly attenuated
and do not propagate [2]. This property is exploited in many
electromagnetic and optical applications, such as microwave
and millimeter-wave antenna structures [3]–[6], waveguides
[7], filters [8], [9], planar reflectors [10], integrated circuits,
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high- and low- resonators [11], quantum optical cavity ef-
fects, optical nanocavities, and more. Sonic band-gap materials
or artificial acoustic crystal substrates are also being studied
[12].

In [13] and [14], reviews of early photonic band-gap research
have been collected. In [15]–[17], research on theoretical and
numerical methods for the analysis and design of photonic
band-gap materials, and also on their applications in the mi-
crowave and millimeter frequency range, have been published.

The most commonly used techniques for the analysis and
design of EBG materials are the plane-wave-expansion method
[1], [18], [19] finite-difference method [20], finite-element
method [21], [22], and transfer-matrix method [23], [24].
Various other techniques have been used, such as the effective
medium theory [25], phased-array method [26], eigenmode
expansion method [6], array scanning method [27], and hybrid
methods [28], [29].

It is noted that most EBG applications deal with two-dimen-
sional (2-D) structures, which are invariant along a longitudinal
axis and periodic in the transverse plane [20], [30]. A 2-D-EBG
structure is easier to manufacture than a three-dimensional one
[31], [32]. Moreover, the characterization of structures of finite
dimensions is obviously of major practical interest than the de-
termination of absolute band-gaps in infinite structures.

An EBG structure can be considered as a stack of diffrac-
tion gratings separated by homogeneous layers, as pointed out in
[33], where the rigorous coupled-wave method of Chateau and
Hugonin [34], revisited by Peng and Morris [35], and based on a
particular -matrix approach has been employed. The purpose
of this paper is to show that accurate, versatile, and fast mod-
eling of finite-thickness (i.e., infinitely extending only in two
dimensions) 2-D-EBG structures can be performed by using the
full-wave method for one-dimensional diffraction gratings used
in [36]. We take advantage of recent calculation techniques to
analyze and design, in a stable and rapidly convergent way, elec-
tromagnetic crystals with rods that have an arbitrary shape; the
rods can form rectangular, triangular, hexagonal, or whatever
kind of lattice, and they can be made of isotropic or anisotropic
dielectric, as well as metallic material. EBG materials with pe-
riodic defects can be studied: EBG structures in which some
layers of rods are missing, or are somehow different from the
other ones, or else are not perfectly aligned. Defects may be
present due to fabrication errors; very often, however, EBG ma-
terials with defects are designed on purpose to act as filters or
switches since the occurrence of a sharp transmission peak in
the band-gap results from defect creation [9], [11].
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Fig. 1. Geometry of a multilevel grating.

In Section II, we explain how a rigorous diffraction theory
for multilevel gratings can be used to model and characterize
2-D-EBG materials. We briefly summarize the formulation of
the employed full-wave theory. We also discuss the potentiality
of such a method in the analysis and design of EBG structures.

In Section III, we first check the efficiency and accuracy of
the approach and numerical implementation that we have devel-
oped: convergence figures as well as comparisons with theoret-
ical results and experimental data taken from the literature, are
reported and commented on (see Section III-A). A rather com-
plete study of EBG materials made of dielectric parallel rods
with a rectangular section is then presented: we investigate the
effects of the variation of geometrical and physical parameters,
and we give several contour plots as well as design formulas
for such structures (see Section III-B). Moreover, we deal with
EBG materials with periodic defects and present an example of
a structure showing polarization- and frequency-selective prop-
erties (see Section III-C).

Finally, in Section IV, concluding remarks are given.

II. MODELING OF 2-D-EBG STRUCTURES THROUGH A

FULL-WAVE METHOD FOR DIFFRACTION GRATINGS

A 2-D electromagnetic crystal may obviously be considered
as a stack of periodic grids of rods separated by homogeneous
layers, i.e., as a stack of one-dimensional diffraction gratings.
As a consequence, it is clear that 2-D-EBG materials can be
analyzed and designed by using a rigorous diffraction theory for
multilevel gratings. For a classical reference about the theory of
gratings, see [37].

The formulation of the employed method is described in de-
tail in [36]. To summarize, consider a monochromatic plane
wave of wavelength (in a vacuum), impinging at an angle
(in the -plane) on the multilevel grating of period shown
in Fig. 1. The typical layer , i.e., the layer located between

and ( , where is the number
of layers), is a binary grating including several alternate regions
of refractive indexes and , respectively. Since the re-
fractive index of the th layer of the grating, say, , is a

periodic function, its square and the inverse of its square can be
expanded in Fourier series of the form

and

(1)

respectively, where and are the th-order Fourier co-
efficients. The multilevel grating is bounded by
two possibly different media having refractive indexes and

, respectively.
The problem being 2-D, the incident polarization may be de-

composed into the two fundamental TE (electric field parallel to
the -direction) and TM (magnetic field parallel to ) polariza-
tions (see the insets in Fig. 1). The general approach for exactly
solving the electromagnetic problem associated with the diffrac-
tion grating involves the solution of Maxwell’s equations in the
incidence region, the grating layers, and the transmission re-
gion.

In the first and last regions, a plane-wave expansion of the
electromagnetic fields is employed. For TE polarization, the
electric field in the incidence region, say, , and in the
transmission region, , can be written as follows:

(2)

and

(3)

respectively. In (2) and (3), (Floquet
condition) and

(4)

(5)

with and . The first term on the
right-hand side (RHS) of (2) corresponds to the incident wave,
while and are the complex amplitudes of the th diffrac-
tion order in reflection and transmission, respectively.

In the th layer, we use a modal expansion for the electro-
magnetic field. For TE polarization, we have

(6)

Here, and are the amplitudes of the th-order eigen-
mode traveling in the - and -direction, respectively;
is the th component of the th eigenvector, and is the
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(a)

(b)

Fig. 2. (a) With the described approach, it is possible to study electromagnetic
crystals with rods having an arbitrary shape. (b) The rods can form rectangular,
triangular, hexagonal, or whatever kind of lattice.

square root (with positive real part) of the th eigenvalue of the
following equation:

(7)

where is the Kronecker symbol and .
The tangential electric- and magnetic-field components have

to be matched at all the boundary surfaces. The resulting equa-
tion system is to be solved for the reflected and transmitted
field amplitudes and . To overcome numerical prob-
lems due to ill-conditioned matrices obtained on imposing the
boundary conditions, and to improve numerical stability and ef-
ficiency of the implemented codes, we applied the technique
presented in [38] to both polarizations.

For TM polarization, the expressions of the magnetic field in
the incidence and transmission regions, and in the th grating
layer, are analogous to (2), (3), and (6), respectively.

As is known, the convergence for TM polarization is more
critical: to obtain a high convergence rate even in TM polariza-
tion, we used the formulation of the eigenvalue problem pre-
sented in [39] and [40].

The above-summarized full-wave theory provides a solution
of the problem of electromagnetic diffraction by grating struc-
tures to an arbitrary degree of accuracy [41].

Our treatment of the EBG structures is very versatile since
it allows us to study electromagnetic crystals with rods having
an arbitrary shape [see Fig. 2(a)]. Moreover, the rods can form
whatever kind of lattice, as sketched in Fig. 2(b). Of course,
EBG materials made of holes in a host medium, instead of rods,
may also be studied.

In case of EBG structures made of parallel rods with a rect-
angular section, forming a rectangular or triangular lattice, the
application of our method is straightforward and especially fast
since only one eigenvalue problem has to be solved.

In case of rods having any shape, the rod section has to be
discretized, as shown, e.g., in Fig. 3 for an EBG structure made
of parallel rods with a circular section forming a rectangular lat-
tice. It is well known that one can approximate a continuous pro-
file of a diffraction grating by dividing it into a large number of

Fig. 3. Discretization of parallel rods having a circular section.

thin planar binary gratings [33]: if each layer is thin enough, the
original structure can be analyzed to a high degree of accuracy.
Thanks to the stability and robustness of the employed method,
in such a discretization, no numerical instability occurs.

As pointed out in Section I, with our approach, EBG materials
with periodic defects can be studied. For example, structures in
which some layers of rods (as well as layers of the homogeneous
background) are missing may be characterized. Moreover, the
presence of rods with a shape somehow different from the other
ones, as well as the occurrence of layers not perfectly aligned,
may be taken into account.

III. NUMERICAL RESULTS

In order to check the efficiency and accuracy of our approach
and numerical implementation, here we compare our numer-
ical results with others in the literature, and we also report and
comment on some convergence data (see Section III-A). We
then study EBG materials made of dielectric parallel rods with
a rectangular section (see Section III-B), investigating the ef-
fects of the variation of geometrical and physical parameters,
and giving efficiency contour plots and design formulas. More-
over, we consider EBG materials that have one periodic defect,
showing their polarization- and frequency-selective properties
(see Section III-C).

We now introduce some symbols that are used throughout
this section (see Fig. 2): and are the dimensions, along

and , respectively, of a rectangular-section rod; and are
the periods, along and , respectively, of the electromagnetic
crystal; is the radius of a circular-section rod. In a triangular
lattice, we assume that there is a lateral shift between two
neighboring layers of rods so that can vary from zero (when
the triangular lattice degenerates in a rectangular one) to .
For each geometrical configuration, it is customary to define
the so-called filling factor , which represents the fraction of
the unit cell of the periodic structure filled by the rod. The
parameter NL represents the number of rod layers in the finite
EBG structure. For what concerns the involved materials,
and are the refractive indexes of rod and background media,
respectively. The discretization parameter is the number of
binary gratings used to approximate a circular-section rod.
Moreover, is the number of diffraction orders taken
into account in the calculation. We denote with the total
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Fig. 4. Convergence of the transmission efficiency � as a function of N for
an EBG structure made of a stack ofNL = 10 layers made of rods with a square
section: d = h = 0:7�; b = b = 0:5d; n = 3:5, and n = 1.

transmission efficiency of the EBG structure, which is the sum of
the efficiencies of all the transmitted orders (the efficiency of the

th transmitted order is the ratio between the Poynting-vector
-component of the th-order transmitted wave and that of

the incident wave). Analogously, we denote with the total
reflection efficiency. From a practical point-of-view, we state the
presence of a band-gap when . Unless otherwise
specified, the incident plane wave is supposed to impinge
normally on the structure .

A. Convergence, Stability, and Accuracy of Our Approach

An example of convergence of the results, as a function of
, is shown in Fig. 4 for an EBG structure made of a stack of

layers (i.e., ), made of rods with a square sec-
tion . The rod refractive index
is and the host medium is supposed to be a vacuum

. From Fig. 4, it is seen that the convergence is fast,
although the rod refractive index is high. Moreover, it can be ap-
preciated that, using the formulation presented in [39] and [40],
we obtain for TM polarization (circles) a rate of convergence
similar to the TE-polarization one (crosses). With and

, convergence to the third decimal figure is obtained
in TE and TM polarization, respectively. With as-
sumes a value that is exact within the fourth decimal figure in
both polarization cases.

We made a comparison with the results obtained by Peng and
Hwang in [42] for an EBG structure of dielectric square-section
rods forming a square lattice. In this case, the geometrical and
physical parameters are and

. In Fig. 5(b), is shown as a function of for TE
polarization when (dotted line), (solid line),
and (dashed line); the curves can be directly compared
with the results of [42, Fig. 3], reported in Fig. 5(a). It can be
seen that there is a very good agreement.

Let us consider the structure analyzed in Fig. 5, but with
. In Fig. 6, we reported as a function of .

Even with such a high number of stacked layers, no numerical
instability occurs, showing the robustness of the approach and
of the numerical implementation. The possibility to characterize
a structure with a very high number of layers is interesting. In
fact, the stopbands of such a structure closely approach those of
the corresponding infinite EBG material.

(a)

(b)

Fig. 5. Comparison between the results obtained by: (a) Peng and Hwang
[42] and (b) our results for an EBG structure of dielectric square-section rods
forming a square lattice: d = h; b = b = 0:5d; n = 2; and n = 1. The
transmission efficiency � is shown as a function of d=� for TE polarization
when NL = 10 (dotted line), NL = 20 (solid line), and NL = 30 (dashed
line).

Fig. 6. Same as in Fig. 5, when NL = 100.

To check our codes in the case of cylindrical rods, we made a
comparison with the results obtained by Kushta and Yasumoto
in [43] for a dielectric-cylinder array immersed in a vacuum; the
cylinder radius is and the cylinder refractive index is

. In Fig. 7, the reflection efficiency of the array is
shown as a function of for TE polarization; the curve can
be directly compared with the results of [43, Fig. 8] (reported
in the inset). It can be appreciated that, also in this case, the
agreement is very good. We also show in Fig. 8, for the same
array of cylinders, with , the convergence of as a
function of for different values of the discretization parameter

.
Finally, we checked our codes in the case of a photonic

band-gap structure made of a stack of cylindrical rods forming
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Fig. 7. Comparison with the results obtained by Kushta and Yasumoto [43]
(see the inset) for a one-dielectric-cylinder array: R = 0:3d; n =

p
2, and

n = 1, TE polarization. The reflection efficiency � of the array is shown as
a function of d=�.

Fig. 8. Convergence of � as a function ofN for the same array of Fig. 7 when
d = 0:9�. Different values of the discretization parameter D are considered:
D = 10 (dots), D = 20 (stars), D = 50 (squares), D = 100 (crosses), and
D = 200 (circles).

Fig. 9. Comparison with the experimental results obtained by Robertson et al.
[44] (dots) for TE polarization for a stack of dielectric-cylinder arrays with d =
h = 1:87 mm, R = 0:37mm, n = 2:98;n = 1, and NL = 7; � is shown
versus the frequency f .

a square lattice, performing a comparison with the experimental
data obtained by Robertson et al. in [44] using the coherent
microwave transient spectroscopy technique. The geometrical
and physical parameters are mm, mm,

, and ; the polarization is TE.
The measurement results were obviously obtained for a finite
array of finite-length cylinders: in particular, the sample was
25-columns wide transverse to the direction of propagation,
and the rods were 100-mm long. Moreover, the diameter of the
rods was mm. In Fig. 9, the transmission efficiency

(a)

(b)

Fig. 10. (a) Transmission efficiency � as a function of 
 = (!d)=(2�c); c
being the light velocity in a vacuum for different values of the normalized shift
s=d. The polarization is TE and NL = 20; the other geometrical and physical
parameters are the same as in Fig. 5. (b) Contour plot for � = 0:001 as a
function of 
 and s=d for the same structure and polarization as in (a). The
band-gaps are localized by means of the letter G. The central line in the plot is
a very little area in which � = 0:001.

is shown as a function of the frequency (in hertz); the
solid line represents our theoretical calculations, while the dots
indicate the measurement results. For what concerns the two
dots nearest to GHz, it can be noticed that our results
predict the presence of a quite pronounced stopband, which is
not seen experimentally (the dots are well above ). In
[44], the authors explained that it was not possible to observe
this stopband due to a limitation of their experimental setup.
It can be affirmed that our theoretical calculations are in
good agreement with the experimental data, showing that our
approach can be applied to practical cases.

B. Structures Made of Dielectric Parallel Rods With a
Rectangular Section

Starting from the EBG structure considered in Fig. 5, we in-
vestigate the effects of the variation of the geometrical and phys-
ical parameters. We also give several design contour plots and
formulas for such structures.

First of all, we consider the variation of the shift . In
Fig. 10(a), the transmission efficiency is shown as a func-
tion of the normalized frequency
being the light velocity in a vacuum for different values of ;
the polarization is TE and . In Fig. 10(b), a contour
plot for as a function of and is shown for the
same structure and polarization as in Fig. 10(a); the band-gaps
are localized by means of the letter . In Fig. 11, the same as
in Fig. 10(b) is reported for TM polarization.
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Fig. 11. Same as in Fig. 10(b) for TM polarization.

Fig. 12. Reflection efficiency � versus the incidence angle � for the same
structure as in Fig. 10, when
 = 0:378; s = 0 (solid line), s = 0:05d (dashed
line), s = 0:1d (dotted line), s = 0:15d (dashed–dotted line), and s = 0:2d

(solid line with squares).

It can be noted that the parameter does not have a great
effect on the normalized-frequency band-gaps of the structure,
especially when the details of the structure are small with respect
to the incident wavelength ( small). Due to an averaging
phenomenon, the behavior of the EBG structure, for given
polarization and incidence angle, depends only on the filling
factor and on the refractive index of the rod material, while
the rod shape and position become less and less important.
The TE gap centered on is not affected either in
location or in amplitude by the variation of ; this stopband
is of particular interest due to its width , which is
25.5% of the central frequency . The TM band-gap centered
on is also almost not affected by the variation
of ; this stopband is wide, i.e., 7.86% of .
For what concerns the TE gap, which can be seen at the top
of the contour plot in Fig. 10(b), it is noted that a widening
of this stopband takes place as increases; at the same
time, a TM gap appears [see Fig. 11]. When reaches the
maximum value 0.5, this gap is centered on and
it is wide, i.e., 6.71% of .

The shift has an interesting effect on the angular bandwidth
of the EBG material. 2-D structures with patterns characterized
by different values of show different performances as the in-
cidence angle varies. To clarify this point, we show in Fig. 12
the reflection efficiency versus the incidence angle for the
same structure of Fig. 10 when [i.e., we are in the
center of the band-gap visible at the bottom of the contour plot
of Fig. 10(b)]. We consider several values of the shift

and . It is seen that there is an inci-

dence angle around which the structures with and
yield a transmission peak; this angle is closer to

as increases, until it disappears. The structure having a pat-
tern characterized by , in fact, exhibits total reflection
at any incidence angle, and the same happens for patterns with
a higher value of . Therefore, since the value of has not
an influence on the location and amplitude of the considered
stopband, one can conclude that, in order to obtain at every inci-
dence angle total reflection, it is convenient to choose .
It can be useful to give an explicit example showing the phys-
ical dimensions of the EBG material that we are considering. At

GHz, in order to obtain , the period of the
structure should be mm; therefore, the dimen-
sions of the square-section rod should be mm
and the shift may be chosen as 0.8 mm or more. Such a struc-
ture exhibits total reflection, in case of TE polarization, at every
incidence angle and from GHz to GHz.

In other cases, it happens that the incidence angles around
which structures with various patterns do not yield a total re-
flection are different, but present for any value of the normalized
shift . In these cases, one can design a composite structure,
made of some layers of a rectangular lattice and some of a tri-
angular lattice with a suitable value of in order to obtain a
2-D-EBG material that exhibits total reflection at any incidence
angle and without affecting the frequency location and ampli-
tude of the band-gap.

As is known, if band-gaps for both TE and TM polarization
states are present and they overlap each other, then their inter-
sections are called complete band-gaps [1]. A large complete
band-gap for the structure of Fig. 10 is the one centered on

. This stopband is wide, i.e., 5.02%
of . Moreover, this band-gap is not affected from the varia-
tion of , as was just commented on. Another large complete
band-gap is present when the shift approaches 0.5. It is cen-
tered on with , i.e., 6.72% of .
Once again, it can be explanatory to give an explicit example
showing the physical dimensions of the EBG structure that we
are considering. At GHz, in order to obtain ,
the period of the structure should be mm;
therefore, the dimensions of the square-section rod should be

mm and the shift may be chosen as 0.83 mm or
more. Such a structure exhibits complete total reflection at every
incidence angle and from GHz to GHz.

Now, we consider once more the EBG structure of Fig. 5
and study the effects of the variation of the filling factor. In
Fig. 13(a), the transmitted efficiency is shown as a function
of for different values of ; the polarization is
TE and . In Fig. 13(b), a contour plot for
as a function of and is shown for the same structure and
polarization as in Fig. 13(a). Also in this case, the letter local-
izes the band-gaps. Moreover, the wider gaps are labeled with a
number. In Fig. 14, the same as in Fig. 13(b) is reported for TM
polarization.

It can be noted that, for small values of , there is no TM
gap. As the filling factor increases, there are up to three TM
gaps. There are more and wider TE than TM stopbands for small
values of the . When the filling factor increases, however,
there are less differences between the two polarization cases.
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(a)

(b)

Fig. 13. (a) Transmission efficiency � versus 
 for different values of
b =d = b =d. The polarization is TE andNL = 20. The other geometrical and
physical parameters are the same as in Fig. 5. (b) Contour plot for � = 0:001
as a function of 
 and b =d for the same structure and polarization as in (a).
The band-gaps are localized by means of the letter G; the wider gaps are also
labeled with a number.

Contour plots like those presented in this paper may be used
as design tools. One can deduce from these plots how to build
the EBG material in order to satisfy specific requirements. How-
ever, it could be very useful to have at one’s disposal design
formulas, i.e., simple expressions giving location and frequency
width of a band-gap as functions of design parameters. To this
aim, we made a polynomial curve fitting of our numerical re-
sults. The coefficients of the polynomials are chosen fitting the
data in a least-square sense. The degree of the polynomials is
two. It has been chosen making a compromise between accu-

Fig. 14. Same as in Fig. 13(b) for TM polarization.

racy goals and the will of maintaining simple design formulas.
For what concerns the variation of the filling factor, we present
formulas for the central frequency and the band-gap width

, respectively, as functions of . The subscript denotes
different gaps with reference to the labels of Figs. 13 and 14
( : TE polarization; : TM polarization); for
each formula, the validity range is specified.
The general expressions are as follows:

(8)

The various coefficients of (8) are reported in Table I. The in-
tersection of gaps 2 with 5 gives the location and width of a
complete stopband, characterized by (9), shown at the bottom
of this page. Moreover, the intersection of gaps 3 with 6 gives
the location and width of another complete stopband, with (10),
shown at the bottom of this page. Once again, we begin from the
EBG structure of Fig. 5 and study the variation of the rod refrac-
tive index. In Fig. 15(a), the transmitted efficiency is shown
as a function of for different values of . The polarization is
TE and . In Fig. 15(b), a contour plot for
as a function of and is shown for the same structure and

(9)

(10)



948 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 3, MARCH 2003

TABLE I
COEFFICIENTS OF (8)

(a)

(b)

Fig. 15. (a) Transmission efficiency � versus 
 for different values of n .
The polarization is TE and NL = 20. The other geometrical and physical
parameters are the same as in Fig. 5. (b) Contour plot for � = 0:001 as a
function of 
 and n for the same structure and polarization as in (a). The
band-gaps are localized by means of the letterG. The wider gaps are also labeled
with a number.

polarization as in Fig. 15(a). The rod refractive index varies from
1 to 5 so that most of the usually employed dielectric materials
are considered. Moreover, as in previous plots, the letter local-
izes the band-gaps and the wider gaps are labeled with a number.
In Fig. 16, the same as in Fig. 15(b) is reported for TM polariza-
tion. As expected, when the rod refractive index increases,

Fig. 16. Same as in Fig. 15(b) for TM polarization.

TABLE II
COEFFICIENTS OF (11)

the global transmittance of the structure is reduced and the stop-
bands become more pronounced and numerous in both polariza-
tion cases.

Making a polynomial curve fitting of our numerical results
plotted in Figs. 15 and 16, we derived some other design for-
mulas of degree 2 or 3 giving location and frequency width
of the band-gaps as a function of . The general expressions
for and are the following ( : TE polariza-
tion; : TM polarization), shown in (11), at the bottom
of this page. The various coefficients of (11) are reported in
Table II. There are no complete band-gaps for results reported
in Figs. 15 and 16, up to . There is then a small com-
plete band-gap for , which is the intersection
of gaps 2 and 4, with (12), shown at the bottom of this page.
A larger complete band-gap extends in the intersection between
gaps 1 and 3. The design formulas giving central frequency and
width of this complete stopband are shown in (13), at the top of
the following page.

C. EBG Materials With Defects

In this section, we consider an example of an EBG structure
that has a periodic defect. As we pointed out in Section I, defects
may be present in an electromagnetic crystal due to fabrication
errors. Moreover, since the occurrence of sharp transmission
peaks in the stopbands results from defect creation, very often

(11)

(12)
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(13)

Fig. 17. Transmission efficiency � versus d=� for TE polarization (solid
line: structure with a central defect; dashed line: structure without the defect).
The geometrical and physical parameters areNL = 21 (so that ten is the number
of layers of rods located on each side of a central defect),n = 2; n = 1; b =

b = 0:25d; s = 0, and the refractive index of the defect is n = 2:4.

Fig. 18. Transmission efficiency � versus the incidence angle � for the same
structure of Fig. 17 when d=� = 0:438 (solid line: structure with a central
defect; dashed line: structure without the defect). Note that for the structure
without the defect, the dashed line is practically coincident with the �-axis.

EBG materials with defects are designed on purpose to act as
filters or switches [9]. With our method, structures in which some
layers of rods (as well as layers of the homogeneous background)
are missing can be accurately characterized. Moreover, the
presence of rods with a shape somehow different from the
other ones and the occurrence of layers not perfectly aligned
may be taken into account.

We present here the case of an EBG material made of square-
section dielectric rods forming a square lattice, in which the de-
fect results from matter excess: in a structure made of an even
number of rod layers, the central layer of homogeneous back-
ground (i.e., the space between the two central layers of rods)
is suppressed. This is equivalent to putting a layer of rods with
an anomalous thickness in the middle of the structure. As it will
be apparent from the numerical results, such a structure shows
polarization- and frequency-selective properties.

The presented structure corresponds to the following param-
eters: (so that ten is the number of rod layers located
on each side of the central defect),

, and the refractive index of the defect is
(this example is chosen because of the existence, for the struc-
ture without defect, of a complete band-gap). The transmission

efficiency (solid line) is shown in Fig. 17 as a function of
for TE polarization. One notes, inside the stopband, the pres-
ence of a sharp transmission peak (due to the defect) centered
on . The considered structure acts as a filter for TE
polarization, while forbidden propagation is kept for TM polar-
ization. In this figure, the behavior of the same structure without
the defect is also shown (dashed line) for comparison.

In Fig. 18, is shown as a function of the incidence angle ,
when , i.e., in correspondence of the transmission
peak.

IV. CONCLUSION

In this paper, a complete characterization of EBG structures
constituted by a finite number of periodical layers has been
carried out. The analysis employs a very accurate and highly
convergent full-wave technique that was developed for the
study of diffraction gratings. In particular, we examined here
electromagnetic crystals made by a finite number of stacked
periodical arrays of dielectric cylinders immersed in a host
dielectric medium. The presented results concern rectangular-
and circular-section rods, but the technique may be employed
for any cross-sectional shape and lattice configuration.

The transmission and reflection efficiencies have been cal-
culated for a variety of cases, and design contour plots and
formulas have been reported that are very useful in the design
procedure. Comparisons were performed with theoretical re-
sults available in the literature, showing very good agreement.
A further comparison with some experimental data for a fi-
nite-width array of finite-length cylinders is favorable, showing
the applicability of the proposed theory to practical devices.
An example of a structure with a periodic defect has been
considered.

The results of this analysis can be employed in many mi-
crowave applications, i.e., filter design, power dividers, planar
reflectors, etc. The presented analysis may be applied to other
element shapes or lattice configurations, anisotropic dielectrics
or metallic materials, and lossy media.
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